Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Oecologia ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564073

ABSTRACT

Mesocarnivores face interspecific competition and risk intraguild predation when sharing resources with apex carnivores. Within a landscape, carnivores across trophic levels may use the same communication hubs, which provide a mix of risks (injury/death) and rewards (gaining information) for subordinate species. We predicted that mesocarnivores would employ different strategies to avoid apex carnivores at shared communication hubs, depending on their trophic position. To test our prediction, we examined how different subordinate carnivore species in the Santa Cruz Mountains of California, USA, manage spatial overlap with pumas (Puma concolor), both at communication hubs and across a landscape-level camera trap array. We estimated species-specific occurrence, visitation rates, temporal overlap, and Avoidance-Attraction Ratios from camera traps and tested for differences between the two types of sites. We found that mesocarnivores generally avoided pumas at communication hubs, and this became more pronounced when pumas scent-marked during their most recent visit. Coyotes (Canis latrans), the pumas' closest subordinate competitor in our system, exhibited the strongest avoidance at communication hubs. Gray foxes (Urocyon cinereoargenteus) avoided pumas the least, which may suggest possible benefits from pumas suppressing coyotes. Overall, mesocarnivores exhibited various spatiotemporal avoidance strategies at communication hubs rather than outright avoidance, likely because they benefit from information gained while 'eavesdropping' on puma activity. Variability in avoidance strategies may be due to differential predation risks, as apex carnivores often interact more aggressively with their closest competitors. Combined, our results show how apex carnivores trigger complex species interactions across the entire carnivore guild and how trophic position determines behavioral responses and subsequent space use of subordinate mesocarnivores across the landscape.

2.
J Chem Ecol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647585

ABSTRACT

The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald). Volatiles were collected using dynamic headspace sampling techniques and identified and quantified using GC-MS. The total amounts of volatiles induced by the aphids did not differ among the 10 cultivars, but overall blends of volatiles differed significantly in composition. Most notably, aphid herbivory induced higher levels of methyl salicylate (MeSA) emission in two cultivars, whereas in four cultivars, the volatile emissions did not change in response to aphid infestation. Dual-choice olfactometer assays were used to determine preference of the aphid parasitoid, Aphelinus nigritus, and predator, Chrysoperla rufilabris, between plants of the same cultivar that were un-infested or infested with aphids. Two aphid-infested cultivars were preferred by natural enemies, while four other cultivars were more attractive to natural enemies when they were free of aphids. The remaining four cultivars elicited no response from parasitoids. Our work suggests that genetic variation in HIPV emissions greatly affects parasitoid and predator attraction to aphid-infested sorghum and that screening crop cultivars for specific predator and parasitoid attractants has the potential to improve the efficacy of biological control.

3.
Proc Biol Sci ; 291(2019): 20231785, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38531405

ABSTRACT

Shifts in phenology are among the key responses of organisms to climate change. When rates of phenological change differ between interacting species they may result in phenological asynchrony. Studies have found conflicting patterns concerning the direction and magnitude of changes in synchrony, which have been attributed to biological factors. A hitherto overlooked additional explanation are differences in the currency used to quantify resource phenology, such as abundance and biomass. Studying an insectivorous bird (the sanderling) and its prey, we show that the median date of cumulative arthropod biomass occurred, on average, 6.9 days after the median date of cumulative arthropod abundance. In some years this difference could be as large as 21 days. For 23 years, hatch dates of sanderlings became less synchronized with the median date of arthropod abundance, but more synchronized with the median date of arthropod biomass. The currency-specific trends can be explained by our finding that mean biomass per arthropod specimen increased with date. Using a conceptual simulation, we show that estimated rates of phenological change for abundance and biomass can differ depending on temporal shifts in the size distribution of resources. We conclude that studies of trophic mismatch based on different currencies for resource phenology can be incompatible with each other.


Subject(s)
Arthropods , Charadriiformes , Animals , Seasons , Birds , Biomass , Climate Change , Temperature
4.
J Environ Manage ; 357: 120663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552509

ABSTRACT

Wetlands, as core habitats for supporting waterbird diversity, provide a variety of ecosystem services through diverse ecosystem functioning. Wetland degradation and wetland-habitat loss undermine the relationship between biodiversity-ecosystem functioning (BEF), affecting the diversity of habitats and waterbirds. The conservation of waterbird diversity is closely linked to the proper functioning of wetland ecosystems (nutrient cycling, energy storage, and productivity). Waterbirds have complex habitat preferences and sensitivities, which affect biotic interactions. By highlighting the importance of temporal and spatial scales guided by BEF, a habitat-waterbird conservation framework is presented (BEF relationships are described at three levels: habitat, primary producers, and waterbird diversity). We present a novel perspective on habitat conservation for waterbirds by incorporating research on the effects of biodiversity and ecosystem functioning to address the crucial challenges in global waterbird diversity loss, ecosystem degradation, and habitat conservation. Last, it is imperative to prioritize strategies of habitat protection with the incorporation of BEF for future waterbird conservation.


Subject(s)
Ecosystem , Wetlands , Conservation of Natural Resources , Biodiversity , Bicycling
5.
J Phycol ; 60(2): 254-272, 2024 04.
Article in English | MEDLINE | ID: mdl-38467467

ABSTRACT

Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.


Subject(s)
Cyanobacteria , Ecosystem , Cyanobacteria/metabolism , Sulfur/metabolism , Carbon/metabolism
6.
Glob Chang Biol ; 30(3): e17253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38519878

ABSTRACT

Vertebrate species worldwide are currently facing significant declines in many populations. Although we have gained substantial knowledge about the direct threats that affect individual species, these threats only represent a fraction of the broader vertebrate threat profile, which is also shaped by species interactions. For example, threats faced by prey species can jeopardize the survival of their predators due to food resource scarcity. Yet, indirect threats arising from species interactions have received limited investigation thus far. In this study, we investigate the indirect consequences of anthropogenic threats on biodiversity in the context of European vertebrate food webs. We integrated data on trophic interactions among over 800 terrestrial vertebrates, along with their associated human-induced threats. We quantified and mapped the vulnerability of various components of the food web, including species, interactions, and trophic groups to six major threats: pollution, agricultural intensification, climate change, direct exploitation, urbanization, and invasive alien species and diseases. Direct exploitation and agricultural intensification were two major threats for terrestrial vertebrate food webs: affecting 34% and 31% of species, respectively, they threaten 85% and 69% of interactions in Europe. By integrating network ecology with threat impact assessments, our study contributes to a better understanding of the magnitude of anthropogenic impacts on biodiversity.


Subject(s)
Food Chain , Vertebrates , Animals , Humans , Ecology , Biodiversity , Introduced Species , Europe , Ecosystem
7.
Glob Chang Biol ; 30(3): e17234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469998

ABSTRACT

Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.


Subject(s)
Ecosystem , Mycorrhizae , Food Chain , Trees , Soil/chemistry , Biodiversity , Plants , Carbon
8.
Trends Parasitol ; 40(2): 106-117, 2024 02.
Article in English | MEDLINE | ID: mdl-38212198

ABSTRACT

The relationship between biodiversity and infectious disease, where increased biodiversity leads to decreased disease risk, originated from research in terrestrial disease systems and remains relatively underexplored in marine systems. Understanding the impacts of biodiversity on disease in marine versus terrestrial systems is key to continued marine ecosystem functioning, sustainable aquaculture, and restoration projects. We compare the biodiversity-disease relationship across terrestrial and marine systems, considering biodiversity at six levels: intraspecific host diversity, host microbiomes, interspecific host diversity, biotic vectors and reservoirs, parasite consumers, and parasites. We highlight gaps in knowledge regarding how these six levels of biodiversity impact diseases in marine systems and propose two model systems, the Perkinsus-oyster and Labyrinthula-seagrass systems, to address these gaps.


Subject(s)
Ecosystem , Parasites , Animals , Biodiversity
9.
J Pest Sci (2004) ; 97(1): 281-296, 2024.
Article in English | MEDLINE | ID: mdl-38223748

ABSTRACT

Understanding trophic interactions in agroecosystems is crucial for harnessing ecosystem services such as pest control, thus enabling a reduction in pesticide use. Carabid beetles (Coleoptera: Carabidae) have the potential to regulate not only insect pests but also weed seeds and slugs. The aim of this study was to investigate the food choice of different carabid species in the experimental setting of a cereal field with varying seed and slug prey availability during the season. In addition to varying food availability, the effects of species identity and season on carabid food choice should also be closely examined. Therefore, the gut contents of 1,120 beetles of eight carabid species were screened for the DNA of plants, aphids, springtails, earthworms and slugs via diagnostic multiplex PCR and a nested metabarcoding approach for plant species identification. Plant DNA was detected far more often (72%) than the various animal prey types (less than 12.5% each). Within the plant detections, 80 weed species were identified in the metabarcoding, with Galinsoga parviflora/quadriradiata (Galinsoga spp.-quickweeds) as the most frequently detected species. Carabid food choice was driven by their species identity and seasonality, while no effect of increased availability of seeds and slugs on their food choice was detected. While weed seeds seem to be an important food source for carabids, their availability does not directly affect the carabid diet. The importance of consumer identity and seasonality highlight the need for a diverse carabid species community for resilient pest control services. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-023-01620-w.

10.
Glob Chang Biol ; 30(1): e17102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273557

ABSTRACT

Soil protists, the major predator of bacteria and fungi, shape the taxonomic and functional structure of soil microbiome via trophic regulation. However, how trophic interactions between protists and their prey influence microbially mediated soil organic carbon turnover remains largely unknown. Here, we investigated the protistan communities and microbial trophic interactions across different aggregates-size fractions in agricultural soil with long-term fertilization regimes. Our results showed that aggregate sizes significantly influenced the protistan community and microbial hierarchical interactions. Bacterivores were the predominant protistan functional group and were more abundant in macroaggregates and silt + clay than in microaggregates, while omnivores showed an opposite distribution pattern. Furthermore, partial least square path modeling revealed positive impacts of omnivores on the C-decomposition genes and soil organic matter (SOM) contents, while bacterivores displayed negative impacts. Microbial trophic interactions were intensive in macroaggregates and silt + clay but were restricted in microaggregates, as indicated by the intensity of protistan-bacterial associations and network complexity and connectivity. Cercozoan taxa were consistently identified as the keystone species in SOM degradation-related ecological clusters in macroaggregates and silt + clay, indicating the critical roles of protists in SOM degradation by regulating bacterial and fungal taxa. Chemical fertilization had a positive effect on soil C sequestration through suppressing SOM degradation-related ecological clusters in macroaggregate and silt + clay. Conversely, the associations between the trophic interactions and SOM contents were decoupled in microaggregates, suggesting limited microbial contributions to SOM turnovers. Our study demonstrates the importance of protists-driven trophic interactions on soil C cycling in agricultural ecosystems.


Subject(s)
Microbiota , Soil , Soil/chemistry , Clay , Carbon/chemistry , Agriculture , Soil Microbiology
11.
Article in English | MEDLINE | ID: mdl-38284299

ABSTRACT

Marine animal forests (MAFs) are benthic ecosystems characterised by biogenic three-dimensional structures formed by suspension feeders such as corals, gorgonians, sponges and bivalves. They comprise highly diversified communities among the most productive in the world's oceans. However, MAFs are in decline due to global and local stressors that threaten the survival and growth of their foundational species and associated biodiversity. Innovative and scalable interventions are needed to address the degradation of MAFs and increase their resilience under global change. Surprisingly, few studies have considered trophic interactions and heterotrophic feeding of MAF suspension feeders as an integral component of MAF conservation. Yet, trophic interactions are important for nutrient cycling, energy flow within the food web, biodiversity, carbon sequestration, and MAF stability. This comprehensive review describes trophic interactions at all levels of ecological organisation in tropical, temperate, and cold-water MAFs. It examines the strengths and weaknesses of available tools for estimating the heterotrophic capacities of the foundational species in MAFs. It then discusses the threats that climate change poses to heterotrophic processes. Finally, it presents strategies for improving trophic interactions and heterotrophy, which can help to maintain the health and resilience of MAFs.

12.
Ecol Lett ; 27(1): e14335, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972585

ABSTRACT

Foraging decisions shape the structure of food webs. Therefore, a behavioural shift in a single species can potentially modify resource-flow dynamics of entire ecosystems. To examine this, we conducted a field experiment to assess foraging niche dynamics of semi-arboreal brown anole lizards in the presence/absence of predatory ground-dwelling curly-tailed lizards in a replicated set of island ecosystems. One year after experimental translocation, brown anoles exposed to these predators had drastically increased perch height and reduced consumption of marine-derived food resources. This foraging niche shift altered marine-to-terrestrial resource-flow dynamics and persisted in the diets of the first-generation offspring. Furthermore, female lizards that displayed more risk-taking behaviours consumed more marine prey on islands with predators present. Our results show how predator-driven rapid behavioural shifts can alter food-web connectivity between oceanic and terrestrial ecosystems and underscore the importance of studying behaviour-mediated niche shifts to understand ecosystem functioning in rapidly changing environments.


Subject(s)
Ecosystem , Lizards , Animals , Female , Food Chain , Predatory Behavior
13.
Trends Plant Sci ; 29(1): 32-39, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37563025

ABSTRACT

There is overwhelming evidence that synthetic pesticides have a negative impact on the environment and human health, emphasizing the need for novel and sustainable methods for plant protection. A growing body of literature reports that plants interact through substrate-borne vibrations with arthropod pests and mutualistic arthropods that provide biological control and pollination services. Here, we propose a new theoretical framework that integrates insights from biological control, the ecology of fear, and plant-borne vibrations, to address plant-insect interactions and explore new, sustainable opportunities to improve plant health and productivity.


Subject(s)
Arthropods , Pesticides , Animals , Humans , Insecta , Plants , Ecology
14.
Mar Pollut Bull ; 198: 115871, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086107

ABSTRACT

Non-indigenous species (NIS) spread from marinas to natural environments is influenced by niche availability, habitat suitability, and local biotic resistance. This study explores the effect of indigenous fish feeding behaviour on NIS proliferation using fouling communities, pre-grown on settlement plates, as two distinct, representative models: one from NIS-rich marinas and the other from areas outside marinas with fewer NIS. These plates were mounted on a Remote Video Foraging System (RVFS) near three marinas on Madeira Island. After 24-h, NIS abundance was reduced by 3.5 %. Canthigaster capistrata's preference for marinas plates suggests potential biotic resistance. However, Sparisoma cretense showed equal biting frequencies for both plate types. The cryptogenic ascidian Trididemnum cereum was the preferred target for the fish. Our study introduces a global framework using RVFS for in-situ experiments, replicable across divers contexts (e.g., feeding behaviour, biotic resistance), which can be complemented by metabarcoding and isotopic analysis to confirm consumption patterns.


Subject(s)
Introduced Species , Tetraodontiformes , Animals , Ecosystem , Feeding Behavior , Portugal
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220362, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37899007

ABSTRACT

Despite 22% of the world's coastal regions experiencing some degree of light pollution, and biologically important artificial light at night (ALAN) reaching large portions of the seafloor (greater than 75%) near coastal developments, the impacts of ALAN on temperate and tropical reefs are still relatively unknown. Because many reef species have evolved in response to low-light nocturnal environments, consistent daily, lunar, and seasonal light cycles, and distinct light spectra, these impacts are likely to be profound. Recent studies have found ALAN can decrease reproductive success of fishes, alter predation rates of invertebrates and fishes, and impact the physiology and biochemistry of reef-building corals. In this paper, we integrate knowledge of the role of natural light in temperate and tropical reefs with a synthesis of the current literature on the impacts of ALAN on reef organisms to explore potential changes at the system level in reef communities exposed to ALAN. Specifically, we identify the direct impacts of ALAN on individual organisms and flow on effects for reef communities, and present potential scenarios where ALAN could significantly alter system-level dynamics, possibly even creating novel ecosystems. Lastly, we highlight large knowledge gaps in our understanding of the overall impact of ALAN on reef systems. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Subject(s)
Anthozoa , Ecosystem , Animals , Light Pollution , Ecology , Invertebrates , Fishes/physiology , Coral Reefs
16.
Animals (Basel) ; 13(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37835728

ABSTRACT

In the present study, we estimated the levels of infestation of the main fish species that are hosts for two Triaenophorus species: T. crassus and T. nodulosus. The prevalence of T. crassus and T. nodulosus infestations in the intestine of their definitive host-pike Esox lucius was similar (71.0% and 77.4%, respectively). At the same time, the prevalence of T. crassus infestation in muscle tissue was significantly different between the second intermediate hosts, Coregonus lavaretus pidschian (31.4%) and Cor. l. pravdinellus (91.2%), due to considerable differences in their diets. For T. nodulosus, we found significant variations in the levels of prevalence among the second intermediate hosts-100% for Lota lota, 81.8% for Cottus sibiricus 31.9% for Thymallus arcticus, and 24.5% for Perca fluviatilis-that we also explained using different diets. Moreover, analysis of the symmetry of parasite infestations did not reveal any asymmetry between the number of cysts in the left and right body surfaces of the "planktivorous" form/species of whitefish, whereas in the ''benthivorous", an asymmetry of parasite infestations was found.

17.
Oecologia ; 203(1-2): 205-218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37831151

ABSTRACT

There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.


Subject(s)
Herbivory , Trees , Biodiversity , Forests , Plants
18.
mBio ; 14(5): e0188623, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37812005

ABSTRACT

Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.


Subject(s)
Bacteriophages , Microbiota , Rhizobium , Bacteria , Ecology
19.
PeerJ ; 11: e15943, 2023.
Article in English | MEDLINE | ID: mdl-37692121

ABSTRACT

Arthropods play a crucial role in terrestrial ecosystems, for instance in mediating energy fluxes and in forming the food base for many organisms. To better understand their functional role in such ecosystem processes, monitoring of trends in arthropod biomass is essential. Obtaining direct measurements of the body mass of individual specimens is laborious. Therefore, these data are often indirectly acquired by utilizing allometric length-biomass relationships based on a correlative parameter, such as body length. Previous studies have often used such relationships with a low taxonomic resolution and/or small sample size and/or adopted regressions calibrated in different biomes. Despite the scientific interest in the ecology of arctic arthropods, no site-specific family-level length-biomass relationships have hitherto been published. Here we present 27 family-specific length-biomass relationships from two sites in the High Arctic: Zackenberg in northeast Greenland and Knipovich in north Taimyr, Russia. We show that length-biomass regressions from different sites within the same biome did not affect estimates of phenology but did result in substantially different estimates of arthropod biomass. Estimates of daily biomass at Zackenberg were on average 24% higher when calculated using regressions for Knipovich compared to using regressions for Zackenberg. In addition, calculations of daily arthropod biomass at Zackenberg based on order-level regressions from frequently cited studies in literature revealed overestimations of arthropod biomass ranging from 69.7% to 130% compared to estimates based on regressions for Zackenberg. Our results illustrate that the use of allometric relationships from different sites can significantly alter the biological interpretation of, for instance, the interaction between insectivorous birds and their arthropod prey. We conclude that length-biomass relationships should be locally established rather than being based on global relationships.


Subject(s)
Arthropods , Ecosystem , Humans , Animals , Biomass , Body Height , Eulipotyphla
20.
Sci Total Environ ; 903: 165882, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37574071

ABSTRACT

Multiple stressors may combine in unexpected ways to alter the structure of ecological systems, however, our current ability to evaluate their ecological impact is limited due to the lack of information concerning historic trophic interactions and ecosystem dynamics. Saronikos Gulf is a heavily exploited embayment in the E Mediterranean that has undergone significant ecological alterations during the last 20 years including a shift from long-standing eutrophic to oligotrophic conditions in the mid-2000's. Here we used a historical Ecopath food-web model of Saronikos Gulf (1998-2000) and fitted the time-dynamic module Ecosim to biomass and catch time series for the period 2001-2020. We then projected the model forward in time from 2021 to 2050 under 8 scenarios to simulate ecosystem responses to the individual and combined effect of sea surface temperature increase, primary productivity shifts and fishing effort release. Incorporating trophic interactions, climate warming, fishing and primary production improved model fit, depicting that both fishing and the environment have historically influenced ecosystem dynamics. Retrospective simulations of the model captured historical biomass and catch trends of commercially important stocks and reproduced successfully the marked recovery of marine resources 10 years after re-oligotrophication. In future scenarios increasing temperature had a detrimental impact on most functional groups, increasing and decreasing productivity had a positive and negative effect on all respectively, while fishing reductions principally benefited top predators. Combined stressors produced synergistic or antagonistic effects depending on the direction and magnitude of change of each stressor in isolation while their overall impact seemed to be strongly mediated via food-web interactions. Such holistic approaches advance of our mechanistic understanding of ecosystems enabling us to develop more effective management strategies in the face of a rapidly changing marine environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...